3,203 research outputs found

    Growing Perfect Decagonal Quasicrystals by Local Rules

    Full text link
    A local growth algorithm for a decagonal quasicrystal is presented. We show that a perfect Penrose tiling (PPT) layer can be grown on a decapod tiling layer by a three dimensional (3D) local rule growth. Once a PPT layer begins to form on the upper layer, successive 2D PPT layers can be added on top resulting in a perfect decagonal quasicrystalline structure in bulk with a point defect only on the bottom surface layer. Our growth rule shows that an ideal quasicrystal structure can be constructed by a local growth algorithm in 3D, contrary to the necessity of non-local information for a 2D PPT growth.Comment: 4pages, 2figure

    Gaussian limits for multidimensional random sequential packing at saturation (extended version)

    Full text link
    Consider the random sequential packing model with infinite input and in any dimension. When the input consists of non-zero volume convex solids we show that the total number of solids accepted over cubes of volume λ\lambda is asymptotically normal as λ→∞\lambda \to \infty. We provide a rate of approximation to the normal and show that the finite dimensional distributions of the packing measures converge to those of a mean zero generalized Gaussian field. The method of proof involves showing that the collection of accepted solids satisfies the weak spatial dependence condition known as stabilization.Comment: 31 page

    Mathematics of random growing interfaces

    Full text link
    We establish a thermodynamic limit and Gaussian fluctuations for the height and surface width of the random interface formed by the deposition of particles on surfaces. The results hold for the standard ballistic deposition model as well as the surface relaxation model in the off-lattice setting. The results are proved with the aid of general limit theorems for stabilizing functionals of marked Poisson point processes.Comment: 12 page

    CR Structures and Asymptotically Flat Space-Times

    Full text link
    We discuss the unique existence, arising by analogy to that in algebraically special space-times, of a CR structure realized on null infinity for any asymptotically flat Einstein or Einstein-Maxwell space-time.Comment: 6 page

    Spacetime structure of static solutions in Gauss-Bonnet gravity: charged case

    Full text link
    We have studied spacetime structures of static solutions in the nn-dimensional Einstein-Gauss-Bonnet-Maxwell-Λ\Lambda system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient α\alpha is non-negative and 4α~/ℓ2≤14{\tilde \alpha}/\ell^2\leq 1 in order to define the relevant vacuum state. Solutions have the (n−2)(n-2)-dimensional Euclidean sub-manifold whose curvature is k=1, 0k=1,~0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of the spacetime. A branch singularity appears at the finite radius r=rb>0r=r_b>0 for any mass parameter. There the Kretschmann invariant behaves as O((r−rb)−3)O((r-r_b)^{-3}), which is much milder than divergent behavior of the central singularity in general relativity O(r−4(n−2))O(r^{-4(n-2)}). Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. Although there is a maximum mass for black hole solutions in the plus branch for k=−1k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=−1k=-1 and n≥6n\geq6 have an "inner" black hole, and inner and the "outer" black hole horizons. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.Comment: 20 pages, 10 figure

    Beyond the veil: Inner horizon instability and holography

    Full text link
    We show that scalar perturbations of the eternal, rotating BTZ black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane wave modes have a divergent stress tensor at the event horizon, but suitable wavepackets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wavepackets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness and positive energy. Due to a focusing effect, regular wavepackets nevertheless have a divergent stress-energy at the inner horizon, signaling an instability. This instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual CFT expectation values in which the analytic behavior of wavepackets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde

    The Universal Cut Function and Type II Metrics

    Get PDF
    In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years - from the work of Hermann Bondi - that energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently we observed that there were certain overlooked structures, {defined at future null infinity,} that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of {complex} `slices' or `cuts' of Penrose's null infinity, are referred to as Universal Cut Functions, (UCF). In particular, one can define from these structures a (complex) center of mass (and center of charge) and its equations of motion - with rather surprising consequences. It appears as if these asymptotic structures contain in their imaginary part, a well defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page

    Quasi-local energy-momentum and energy flux at null infinity

    Full text link
    The null infinity limit of the gravitational energy-momentum and energy flux determined by the covariant Hamiltonian quasi-local expressions is evaluated using the NP spin coefficients. The reference contribution is considered by three different embedding approaches. All of them give the expected Bondi energy and energy flux.Comment: 14 pages, accepted by Phys.Rev.

    On the well posedness of Robinson Trautman Maxwell solutions

    Full text link
    We show that the so called Robinson-Trautman-Maxwell equations do not constitute a well posed initial value problem. That is, the dependence of the solution on the initial data is not continuous in any norm built out from the initial data and a finite number of its derivatives. Thus, they can not be used to solve for solutions outside the analytic domain.Comment: 9 page

    Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation

    Full text link
    We discuss the issue of radiation extraction in asymptotically flat space-times within the framework of conformal methods for numerical relativity. Our aim is to show that there exists a well defined and accurate extraction procedure which mimics the physical measurement process. It operates entirely intrisically within \scri^+ so that there is no further approximation necessary apart from the basic assumption that the arena be an asymptotically flat space-time. We define the notion of a detector at infinity by idealising local observers in Minkowski space. A detailed discussion is presented for Maxwell fields and the generalisation to linearised and full gravity is performed by way of the similar structure of the asymptotic fields.Comment: LaTeX2e,13 pages,2 figure
    • …
    corecore